CÁLCULO Trascendentes
La historia del cálculo
Por Roger Cooke
University of Vermont
Suele considerarse que el cálculo es una creación de los matemáticos europeos del siglo XVII, cuyo trabajo más importante fue realizado por Isaac Newton (1642-1727) y Gottfried Wilhelm Leibniz (1646-1711). Esta percepción tradicional en general es correcta. No obstante, cualquier teoría a gran escala es un mosaico cuyas baldosas fueron colocadas a lo largo de mucho tiempo; y en cualquier teoría viviente las baldosas continúan colocándose de manera continua.
¿Qué es el cálculo?
El cálculo suele dividirse en dos partes, denominadas cálculo diferencial y cálculo integral. El cálculo diferencial investiga las propiedades de las razones de cambio comparativas de variables que están vinculadas por medio de ecuaciones. Por ejemplo, un resultado fundamental del cálculo diferencial es que si y = xn , entonces la razón de cambio de y con respecto a x es nxn-1 . Resulta que cuando se usa la intuición para pensar en ciertos fenómenos —movimiento de los cuerpos, cambios en la temperatura, crecimiento de poblaciones y muchos otros—, se llega a postular ciertas relaciones entre estas variables y sus razones de cambio.El cálculo integral proporciona métodos para recuperar las variables originales conociendo sus razones de cambio. La técnica para hacer esto se denomina integración, y el objetivo fundamental del estudio del cálculo integral es aprender a resolver las ecuaciones diferenciales proporcionadas por el cálculo diferencial. A menudo estos objetivos están encubiertos en libros de cálculo, donde el cálculo diferen- cial se utiliza para encontrar los valores máximo y mínimo de ciertas variables, y el cálculo inte- gral se usa para calcular longitudes, áreas y volúmenes. Hay dos razones para recalcar estas aplicaciones en un libro de texto. Primero, la utilización completa del cálculo usando ecuaciones diferenciales implica una teoría más bien complicada que debe presentarse de manera gradual; entre tanto, al estudiante debe enseñársele algún uso de las técnicas que se proponen. Segundo, estos problemas fueron la fuente de las ideas que condujeron al cálculo; los usos que ahora hacemos del tema sólo se presentaron después del descubrimiento de aquél.
Al describir los problemas que llevaron al cálculo y los problemas que pueden resolverse usando cálculo, aún no se han indicado las técnicas fundamentales que hacen de esta disciplina una herramienta de análisis mucho más poderosa que el álgebra y la geometría. Estas técnicas implican el uso de lo que alguna vez se denominó análisis infinitesimal. Todas las construcciones y las fórmulas de la geometría y el álgebra de preparatoria poseen un carácter finito. Por ejemplo, para construir la tangente de un círculo o para bisecar un ángulo se realiza un número finito de operaciones con regla y compás.
Cuando las ecuaciones pueden resolverse, la solución se expresa como una fórmula finita que implica coeficientes. Sin embargo, estas técnicas finitas cuentan con un rango limitado de aplicabilidad. No es posible encontrar las áreas de la mayoría de las figuras curvas mediante un número finito de operaciones con regla y compás, y tampoco resolver ecuaciones polinomiales de grado mayor o igual que cinco usando un número finito de operaciones algebraicas. Lo que se quería era escapar de las limitaciones de los métodos finitos, y esto condujo a la creación del cálculo. Ahora consideraremos algunos de los primeros intentos por desarrollar técnicas para manipular los problemas más difíciles de la geometría, luego de lo cual trataremos de resumir el proceso mediante el que se trabajó el cálculo, y finalmente exhibiremos algo de los frutos que ha producido.
Las fuentes geométricas del cálculo
Uno de los problemas más antiguos en matemáticas es la cuadratura del círculo; es decir, construir un cuadrado de área igual a la de un círculo dado. Como se sabe, este problema no puede resolverse con regla y compás. Sin embargo, Arquímedes descubrió que si es posible trazar una espiral, empezando en el centro de un círculo que hace exactamente una revolución antes de llegar al círculo, entonces la tangente a esa espiral, en su punto de intersección con el círculo, forma la hipotenusa de un triángulo rectángulo cuya área es exactamente igual al círculo (vea la figura 1). Entonces, si es posible trazar esta espiral y su tangente, también lo es cuadrar el círculo. Arquímedes, no obstante, guardó silencio sobre cómo podría trazarse esta tangente. Observamos que uno de los problemas clásicos en matemáticas puede resolverse sólo si es posible trazar cierta curva y su tangente. Este problema, y otros parecidos, originaron que el problema puramente matemático de encontrar la tangente a una curva se volviera importante. Este problema constituye la fuente más importante del cálculo diferencial. El truco “infinitesimal”
CÁLCULO Trascendentes tempranas Dennis G. zill / PDF
CÁLCULO Trascendentes tempranas Dennis G. zill / EPUB
CÁLCULO Trascendentes tempranas Dennis G. zill / MOBI
CÁLCULO Trascendentes tempranas Dennis G. zill / TXT
CÁLCULO Trascendentes tempranas Dennis G. zill / zip
CÁLCULO Trascendentes tempranas Dennis G. zill / Rar
CÁLCULO Trascendentes tempranas Dennis G. zill / Online
CÁLCULO Trascendentes tempranas Dennis G. zill / zip
CÁLCULO Trascendentes tempranas Dennis G. zill / Rar
CÁLCULO Trascendentes tempranas Dennis G. zill / Online
CÁLCULO Trascendentes tempranas Dennis G. zill / KINDLE
CÁLCULO Trascendentes tempranas Dennis G. zill / DOCUMENTO